I’m pretty sure it’s c.... hope it helps and hope it’s right.
Answer:
a)ΔV = 6.48 KV
b)ΔU =18.79 mJ
Explanation:
Given that
E= 1.8 KV/m
a)
We know that
Electric potential difference ΔV given as
ΔV = E .d
Here
E= 1.8 KV/m
d= 3.6 m
ΔV = E .d
ΔV = 1.8 x 3.6 KV
ΔV = 6.48 KV
b)
Given that
q=+2.90 µC
Change in electric potential energy ΔU given as
ΔU = q .ΔV

ΔU =18.79 mJ
Explanation:
1. Force=mass*acceleration
acceleration=force/mass
=100/50
=2m/s^2
2. Gravitational force for downward acceleration= mg-ma=m(g-a) , since a is less than g,
So it will be= 50(9.8-2)
=50(7.8)= 390N
First method
initial distance = 16m
final distance= 43 m
total distance covered= final -initial
=43m -16m
=27m
Second method
Si= 16m
Sf =43 m
t= 12 s
first we will find V
V = (Sf-Si)/ t
V =( 43- 16)/ 12
V = 27/12 ⇒ V= 9/4
V= distance / time
distance= V×time
distance = (9/4) ×12
distance =27