C.) The measuring unit of "Electrical Power" is "Watt"
Hope this helps!
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Answer:
Car H
Explanation:
Frictional force is a resistant force. It is given as:
F = u*m*g
Where u = coefficient of friction
m = mass
g = acceleration due to gravity
From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.
Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.
The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.
So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.
Answer: 0.83333333333 km/h
Explanation: give brainliest
The correct answer is Destructive Interference.Consider the image attached below. Two waves are travelling towards each other. Blue wave always has a positive peak and the red wave always has a negative peak.
Now imagine these waves are moving through a rope. If blue waves will try to move the rope in positive direction, the red wave will pull it down, and thus the two waves will cancel the effect of each other. Thus resulting in a destructive interference.