Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
So there is a decimal after the last zero and it looks like this 5098000. You have to move the decimal point six back to get in between the five and the zero which looks like this 5.098000
<span>Scientific notation is the way that scientists easily handle very large numbers or very small numbers. For example, instead of writing 0.0000000056, we write 5.6 x 10^<span>9</span>.</span>
Being that we moved the decimal six places back the answer is 5.098 x 10^6
Explanation:
Following are two interactions that are generally involved when we use a TV remote control to change the channel :
1. Figure touches remote buttons, and its a short range interaction.
2. Now remote sends signal to Television, this is a long range interaction.
Answer:
38.3 m/s
Explanation:
To find vertical component of initial velocity, you'd have to use sine ratio:

is vertical component of initial velocity and
is initial velocity given which is 50 m/s.
A stone is projected at an angle of 50 degrees so
= 50°. Substitute in the formula:

Therefore, the vertical component of initial velocity is approximately 38.3 m/s
(The picture is also attached for visual reference!)