Answer:
Answer explained below
Explanation:
(a) The rays are diverging near the lens. They change the direction when they passed through the converging lens
(b) If the light rays don't bend they will move away from the optical (principal axis) as the other waves are moving.
(c) If we decrease the distance between lens and light source, most of the rays diverge and no ray converges on the screen even after passing through the lens. Here is a screenshot.
Answer:
The required angular speed the neutron star is 10992.32 rad/s
Explanation:
Given the data in the question;
mass of the sun M
= 1.99 × 10³⁰ kg
Mass of the neutron star
M
= 2( M
)
M
= 2( 1.99 × 10³⁰ kg )
M
= ( 3.98 × 10³⁰ kg )
Radius of neutron star R
= 13.0 km = 13 × 10³ m
Now, let mass of a small object on the neutron star be m
angular speed be ω
.
During rotational motion, the gravitational force on the object supplies the necessary centripetal force.
GmM
= / R
² = mR
ω
²
ω
² = GM
= / R
³
ω
= √(GM
= / R
³)
we know that gravitational G = 6.67 × 10⁻¹¹ Nm²/kg²
we substitute
ω
= √( ( 6.67 × 10⁻¹¹ )( 3.98 × 10³⁰ ) ) / (13 × 10³ )³)
ω
= √( 2.65466 × 10²⁰ / 2.197 × 10¹²
ω
= √ 120831133.3636777
ω
= 10992.32 rad/s
Therefore, The required angular speed the neutron star is 10992.32 rad/s
Answer:
Explanation:
Momentum is a concept and is defined as,
Momentum = mass × velocity
So to calculate the momentum of the car
momentum of the car = mass of the car × velocity of the car
So we get,
momentum of the car = 1800 × 30
= 54000 Ns
If both bars are made of a good conductor, then their specific heat capacities must be different. If both are metals, specific heat capacities of different metals can vary by quite a bit, eg, both are in kJ/kgK, Potassium is 0.13, and Lithium is very high at 3.57 - both of these are quite good conductors.
If one of the bars is a good conductor and the other is a good insulator, then, after the surface application of heat, the temperatures at the surfaces are almost bound to be different. This is because the heat will be rapidly conducted into the body of the conducting bar, soon achieving a constant temperature throughout the bar. Whereas, with the insulator, the heat will tend to stay where it's put, heating the bar considerably over that area. As the heat slowly conducts into the bar, it will also start to cool from its surface, because it's so hot, and even if it has the same heat capacity as the other bar, which might be possible, it will eventually reach a lower, steady temperature throughout.
Answer:
17 °C
Explanation:
From specific Heat capacity.
Q = cm(t₂-t₁)................. Equation 1
Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.
make t₁ the subject of the equation
t₁ = t₂-(Q/cm)............... Equation 2
Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c
Substitute into equation 2
t₁ = 22-[5000/(4×250)
t₁ = 22-(5000/1000)
t₁ = 22-5
t₁ = 17 °C