1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
9

A theory that stands the test of time and becomes the basis for a field of

Physics
2 answers:
Morgarella [4.7K]3 years ago
8 0

Answer:

Paradigm

Explanation:

A theory is a set of statements that purport to say something about the way the world works. A theory that stands the test of time and becomes the basis for a field of study is known as paradigm. It provides the background or the frame that allows a theory to be tested and measured.

mestny [16]3 years ago
5 0

Answer:

A working theory

Explanation:

It's name defines it for itself, and also the other three options are not appropriate: conclusion is the result of a logical process, hypothesis is the premises one wants to test in an experiment, and paradigm is more ample than just a working theory, since it encompasses the set of all methods, standards, concepts and thoughts associated with a particular field of research.

You might be interested in
What does digital media allow you to do?
kifflom [539]
Digital media<span> are any </span>media<span> that are encoded in machine-readable formats. </span>
4 0
4 years ago
I need helpppppppppppppppppp!
allsm [11]

Answer:

i think its B

Explanation:

but check it before do it  

3 0
3 years ago
Read 2 more answers
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
3 years ago
The driver of a car slams on the brakes, causing the car to slow down at a rate of
sdas [7]

Answer:

A. The time taken for the car to stop is 3.14 secs

B. The initial velocity is 81.64 ft/s

Explanation:

Data obtained from the question include:

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Final velocity (V) = 0

Time (t) =?

Initial velocity (U) =?

A. Determination of the time taken for the car to stop.

Let us obtain an express for time (t)

Acceleration (a) = Velocity (V)/time(t)

a = V/t

Velocity (V) = distance (s) /time (t)

V = s/t

a = s/t^2

Cross multiply

a x t^2 = s

Divide both side by a

t^2 = s/a

Take the square root of both side

t = √(s/a)

Now we can obtain the time as follow

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Time (t) =..?

t = √(s/a)

t = √(256/26)

t = 3.14 secs

Therefore, the time taken for the car to stop is 3.14 secs

B. Determination of the initial speed of the car.

V = U + at

Final velocity (V) = 0

Deceleration (a) = –26ft/s2

Time (t) = 3.14 sec

Initial velocity (U) =.?

0 = U – 26x3.14

0 = U – 81.64

Collect like terms

U = 81.64 ft/s

Therefore, the initial velocity is 81.64 ft/s

7 0
3 years ago
Find the radius using the centripetal acceleration formula: acceleration = 6.6 x 10^6 m/s^2 velocity = 2,000 rev/s
aksik [14]

the radius is 231

Explanation:

6 0
3 years ago
Other questions:
  • Explain the flow of electrons from the battery through the circuit
    14·1 answer
  • A term used to describe water that is safe to drink?
    15·1 answer
  • At the instant the traffic light turns green, an automobile starts with a constant acceleration a of 2.5 m/s2. At the same insta
    11·1 answer
  • A large balloon is initially filled to a volume of 25.0 l at 353 k and a pressure of 2575 mm hg. what volume of gas will the bal
    13·1 answer
  • The voltage across a resistor is found to be 1.5 V. It is also found that there is a charge of 2 Coulombs passing through the re
    8·1 answer
  • A uniform plank of length 6.1 m and mass 33 kg rests horizontally on a scaffold, with 1.6 m of the plank hanging over one end of
    5·1 answer
  • A plane wall of thickness 0.1 mm and thermal conductivity 25 W/m K having uniform volumetric heat generation of 0.3 MW/m3 is ins
    13·1 answer
  • Help someone :(((((((((((((((
    8·2 answers
  • Which of the following are in the correct order from smallest to largest?
    9·1 answer
  • Skater N, 58.9 kg, is moving north at a speed of 7.8 m/s when she collides with Skater E, 72.6 kg, moving east at 3.5 m/s. The t
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!