Answer:
Yes that's right. Not really sure what your looking for as far as a reason goes. You performed the correct operations and got the right answer.
Answer:
V at C is 3.6 m/s
Explanation:
At A kinetic energy is zero and potential energy=mgh=0.5*9.81*0.6=2.943 J
By conservation of energy.
KE+PE=Constant
At C PE=0.6 J
the KE=2.943-0.6=2.343 J
KE=0.5*m*v^2
v=√[KE/(0.5*m)]=3.06 m/s
Answer
Explanation:
Yes, it's true that the solid layer of the earth is known as the most dense part as it is made up of the heavy metals like iron and nickel. Inner part is the hotter part due to the high pressure and temperature. It has the temperature of about 5,200°C and the pressure of 3.6 million atm but still the iron and nickel are present there in the solid form as they withstand such high temperature and pressure values.
Answer:
1.6 x 10⁻¹⁹ C
Explanation:
Let us arrange the charges in the ascending order and round them off as follows :-
1.53 x 10⁻¹⁹ C → 1.6x 10⁻¹⁹ C
3.26 x 10⁻¹⁹C → 3.2 x 10⁻¹⁹ C
4.66 x 10⁻¹⁹C → 4.8 x 10⁻¹⁹ C
5.09 x 10⁻¹⁹C → 4.8 x 10⁻¹⁹ C
6.39 x 10⁻¹⁹C → 6.4 x 10⁻¹⁹ C
The rounding off has been made to facilitate easy calculation to come to a conclusion and to accommodate error in measurement.
Here we observe that
2 nd charge is almost twice the first charge
3 rd and 4 th charges are almost 3 times the first charge
5 th charge is almost 4 times the first charge.
This result implies that 2 nd to 5 th charges are made by combination of the first charge ie if we take e as first charge , 2nd to 5 th charges can be written as 2e, 3e ,3e and 4e. Hence e is the minimum charge existing in nature and on electron this minimum charge of 1.6 x 10⁻¹⁹ C exists.
Formula for final velocity: Vf= vi+(a*t)
Vi- initial velocity, a=acceleration, t-time
Vf=vi+(at)
Vf= 0+(9.8m/s*2.8s)
Vf= 27.44 m/s
The acceleration of the Earth when dropping something would be 9.8 m/s
Here is an reference that can help you answer problems like these.
Hope this helps and good luck :)