Answer:
The time taken by the rock to reach the ground is 0.569 seconds.
Explanation:
Given that,
A student throws a rock horizontally off a 5.0 m tall building, s = 5 m
The initial speed of the rock, u = 6 m/s
We need to find the time taken by the rock to reach the ground. Using second equation of motion to find it. We get :

So, the time taken by the rock to reach the ground is 0.569 seconds. Hence, this is the required solution.
L = illuminance
A = surface
i = intensity
L = i / A ==: i = L * A
i = 6 lux * 4 m^2 = 24 lumen
Answer:
a
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
b
Explanation:
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
When
we have that

=> 
=>
Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find
