<span>net work = change in kinetic energy
for Block B, we just have the force from block A acting on it
F(ab)d= .5(1)vf² - .5(1)(2²)
F(ab)d= .5vf² - 2
Block A, we have the force from the hand going in one direction and the force of block B on A going the opposite direction
10-F(ba)d = .5(4)vf² - .5(4)(2²)
10-F(ba)d = 2vf² - 8
F(ba)d = 18 - 2vf²
now we have two equations:
F(ba)d = 18 - 2vf²
F(ab)d= .5vf² - 2
since the magnitude of F(ba) and F(ab) is the same, substitute and find vf (I already took into account the direction when solving for F(ab)
10-.5vf² + 2 = 2vf² - 8
12 - .5vf² = 2vf² - 8
20 = 2.5vf²
vf² = 8
they both will have the same velocity
KE of block A= .5(4)(2.828²) = 16 J
KE of block B=.5(1)(2.828²) = 4 J</span>
Answer:
Will see them as only one star
Explanation:
Solution:
- The angular resolution of a telescope means the minimum quantity that can be visualized. Since their angular separation ( 0.1 arcseconds ) is smaller than the telescope's angular resolution (1 arcseconds ), your photograph will seem to show only one star rather than two.
Answer:
Plan B.
Because flexibility is best improved by stretching.
Explanation:
Improving and increasing flexibility is done by having stretching sessions daily which maintains and widens the range of motion in the joints and stretches muscles.
Answer:
The average force exerted by the water on the ground is 17.53 N.
Explanation:
Given;
mass flow rate of the water, m' = 135 kg/min
height of fall of the water, h = 3.1 m
the time taken for the water to fall to the ground;

mass of the water;

the average force exerted by the water on the ground;
F = mg
F = 1.789 x 9.8
F = 17.53 N
Therefore, the average force exerted by the water on the ground is 17.53 N.