Answer:
As a decimal its 6.34, If you round up then its 6.35
As a fraction its 400/63
As a mixed number its 6 22/63
The absolute value function |<em>x</em>| always returns a non-negative number. It takes any number <em>x</em> and returns <em>x</em> if it's already non-negative, or -<em>x</em> if it is negative in order to make it positive.

For the equation
-3 + 4 |2<em>x</em> - 5| = 14
rearrange terms to get
|2<em>x</em> - 5| = 17/4
Now,
• if 2<em>x</em> - 5 ≥ 0, then |2<em>x</em> - 5| = 2<em>x</em> - 5. Then
2<em>x</em> - 5 = 17/4
• and if instead 2<em>x</em> - 5 < 0, then |2<em>x</em> - 5| = -(2<em>x</em> - 5), so that
-(2<em>x</em> - 5) = 17/4, or
2<em>x</em> - 5 = -17/4
In the first case,
2<em>x</em> - 5 = 17/4
2<em>x</em> = 17/4 + 5 = 37/4
<em>x</em> = 37/8
In the second case,
2<em>x</em> - 5 = -17/4
2<em>x</em> = -17/4 + 5 = 3/4
<em>x</em> = 3/8
Hello,
Use the factoration
a^2 - b^2 = (a - b)(a + b)
Then,
x^2 - 81 = x^2 - 9^2
x^2 - 9^2 = ( x - 9).(x + 9)
Then,
Lim (x^2- 81) /(x+9)
= Lim (x -9)(x+9)/(x+9)
Simplity x + 9
Lim (x -9)
Now replace x = -9
Lim ( -9 -9)
Lim -18 = -18
_______________
The second method without using factorization would be to calculate the limit by the hospital rule.
Lim f(x)/g(x) = lim f(x)'/g(x)'
Where,
f(x)' and g(x)' are the derivates.
Let f(x) = x^2 -81
f(x)' = 2x + 0
f(x)' = 2x
Let g(x) = x +9
g(x)' = 1 + 0
g(x)' = 1
Then the Lim stay:
Lim (x^2 -81)/(x+9) = Lim 2x /1
Now replace x = -9
Lim 2×-9 = Lim -18
= -18
Answer:290
Step-by-step explanation: