Answer: 4 molL-1
Explanation:
Detailed solution is shown in the image attached. The number of moles of NaCl is first obtained. Since the molarity must be in units of molL-1, the volume is divided by 1000 and the formula stated in the solution is applied and the answer is given to one significant figure.
Answer: 2. magnesium
Explanation: correct spelling...?
The answer is 492.8 g
1. Calculate a number of moles of a sample.
2. Calculate a molar mass of C3H8.
3. Calculate a mass of the sample.
1. Avogadro's number is the number of units (atoms, molecules) in 1 mole of substance: 6.023 × 10²³ units per 1 mole
6.023 × 10²³ atoms : 1 mol =6.72 × 10²⁴ atoms : n
n = 6.72 × 10²⁴ atoms * 1 mol : 6.023 × 10²³ atoms = 1.12 × 10 mol = 11.2 mol
2. Molar mass (Mr) of C3H8 is sum of atomic masses (Ar) of its elements:
Ar(C) = 12 g/mol
Ar(H) = 1 g/mol
Mr(C3H8) = 3 * Ar(C) + 8 * Ar(H) = 3 * 12 + 8 * 1 = 36 + 8 = 44 g/mol
3. Mass (m) of a sample is number of moles (n) multiplied by molar mass (Mr) of C3H8:
m = n * Mr = 11.2 mol * 44 g/mol = 492.8 g
Answer: The products formed in this Bronsted-Lowry reaction are
and
.
Explanation:
According to Bronsted-Lowry, acids are the species which donate hydrogen ions to another specie in a chemical reaction.
Bases are the species which accept a hydrogen ion upon chemical reaction.
For example, 
Here, the products formed in this Bronsted-Lowry reaction are
and
.
Thus, we can conclude that the products formed in this Bronsted-Lowry reaction are
and
.