People who work with radioactive materials often wear a film badge to reveal how much radiation they have been exposed to. The film badge dosimeter or the film badge is a dosimeter worn by these people working with materials that are radioactive for the purpose of monitoring cumulative radiation dose due to ionizing radiation. The badge has two parts; the photographic film, and a holder.
Answer:
1 moles
Explanation:
The answer is 0.0011897028836018. We assume you are converting between moles CuNo3 and gram. You can view more details on each measurement unit: molecular weight of CuNo3 or grams The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles CuNo3, or 840.546 grams.
Explanation:
for immiscible liquids it is quite easy to separate and the separating funnel can be used but for miscible liquid they form a single entity and separating them is quite impossible if the differences in temperature is not considered,so in distillation the one with lower boiling point evaporates out living behind the one with high boiling point
Answer:
They all can, but HCl would be the strongest conductors because they are strong acids/bases, meaning their ions dissociate at a faster rate in aqueous solution.
Answer: a) Anode: 
Cathode: 
b) Anode : Cr
Cathode : Au
c) 
d) 
Explanation: -
a) The element Cr with negative reduction potential will lose electrons undergo oxidation and thus act as anode.The element Au with positive reduction potential will gain electrons undergo reduction and thus acts as cathode.
At cathode: 
At anode: 
b) At cathode which is a positive terminal, reduction occurs which is gain of electrons.
At anode which is a negative terminal, oxidation occurs which is loss of electrons.
Gold acts as cathode ad Chromium acts as anode.
c) Overall balanced equation:
At cathode:
(1)
At anode:
(2)
Adding (1) and (2)

d)
= -0.74 V
= 1.40 V

Using Nernst equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Au^{3+}]}{[Cr^{3+}]^}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BAu%5E%7B3%2B%7D%5D%7D%7B%5BCr%5E%7B3%2B%7D%5D%5E%7D)
where,
n = number of electrons in oxidation-reduction reaction = 3
= standard electrode potential = 2.14 V
![E_{cell}=2.14-\frac{0.0592}{3}\log \frac{[1.0}{[1.0]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D2.14-%5Cfrac%7B0.0592%7D%7B3%7D%5Clog%20%5Cfrac%7B%5B1.0%7D%7B%5B1.0%5D%7D)

Thus the standard potential for an electrochemical cell with the cell reaction is 2.14 V.