If im right the answer is wrong actually because no clue
Answer:
Explanation:
As given, the student has three balloons and rubs two of them on a piece of wool. The rubbing of balloon on wool is the independent variable as it was done on two and not on the third as control.
The working distance gets shorter as the magnification gets bigger. In order to focus, the high-power objective lens must be significantly nearer to the specimen than the low-power lens. Magnification is negatively correlated with working distance.
Magnification change The magnification of a specimen is increased by switching from low power to high power. The magnification of an image is determined by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eyepiece.
The geometry of the optical system connects the magnifying power, or how much the thing being observed seems expanded, and the field of view, or the size of the object that can be seen.
To know more about working distance
brainly.com/question/13551539
#SPJ4
Answer:
λ = 65.6 pm
Explanation:
Given that
λo = 65 pm
The initial energy of the electron
Now by putting the values
Eo=19.06 KeV
Given that kinetic energy KE= 0.84 KeV
Therefore the final energy
E= Eo - KE
E = 19.06 - 0.84 KeV
E= 18.22 KeV
The wavelength λ can be find as
λ = 6.56 x 10⁻¹¹ m
λ = 65.6 pm