Answer:
D
Explanation:
Because it is the principle of conservation of energy which is proved and verified
Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.
<u>Answer:</u>
2N/cm
<u>Step-by-step explanation:</u>
According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

where,
is the force which is stretching or compressing the spring,
is the spring constant; and
is the distance the spring is stretched.
Substituting the given values to find the elastic constant
to get:




Therefore, the elastic constant is 2 Newton/cm.
Answer:
<em>600N.</em>
Explanation:
From the question, we are to calculate the net force acting on the car.
According to Newton's second law of motion:
F = ma
m is the mass of the car
a is the acceleration = change in velocity/Time
a = v-u/t
F = m(v-u)/t
v is the final velocity = 30m/s
u is the initial velocity = 20m/s
t is the time = 5secs
m = 300kg
Get the net force:
Recall that: F = m(v-u)/t
F = 300(30-20)/5
F = 60(30-20)
F = 60(10)
<em>F = 600N</em>
<em>Hence the net force acting on the car is 600N.</em>
<em></em>
<em></em>
I think true. I'm pretty sure, but check w/ others too.