1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
3 years ago
7

One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a s

mall patch of light on the far wall. Having recently studied optics in your physics class, you're not too surprised to see that the patch of light seems to be a circular diffraction pattern. It appears that the central maximum is about 2 cmcm across, and you estimate that the distance from the window shade to the wall is about 5 mm.
Required:
Estimate the diameter of the pinhole.
Physics
1 answer:
gayaneshka [121]3 years ago
4 0

Complete Question

One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a small patch of light on the far wall. Having recently studied optics in your physics class, you're not too surprised to see that the patch of light seems to be a circular diffraction pattern. It appears that the central maximum is about 2 cm across, and you estimate that the distance from the window shade to the wall is about 5 m.

Required:

Estimate the diameter of the pinhole.  

Answer:

The diameter is  d =0.000336 m

Explanation:

     From the question we are told that

            The central maxima is D= 2cm = \frac{2}{100} = 0.02m

            The distance from the window shade is L = 5m

     The  average wavelength of the  sun is mathematically evaluated as

                         \lambda_{ave } = \frac{\lambda_i  + \lambda_f}{2}

 Generally the visible light spectrum  has a wavelength  range  between  400 nm  to 700 nm  

        So  the initial wavelength of the sun is \lambda _i = 400nm

           and the final wavelength is  \lambda_f = 700nm

  Substituting this into the above equation

                 \lambda_{sun} = \frac{400nm  +700nm}{2}

                        = 550nm

The diameter is evaluated as

              d = \frac{2.44 \lambda_{sun} L}{D}

substituting values

              d = \frac{2.44 * 550*10^{-9} * 5 }{0.02}

                d =0.000336 m

You might be interested in
Consider your moment of inertia about a vertical axis through the center of your body, both when you are standing straight up wi
jeka94

Answer:

     I₁ / I₂ = 1.43

Explanation:

To find the relationship of the two inertial memits, let's calculate each one, let's start at the moment of inertia with the arms extended

Before starting let's reduce all units to the SI system

       d₁ = 42 in (2.54 10⁻² m / 1 in) = 106.68 10⁻² m

       d₂ = 38 in = 96.52 10⁻² m

The moment of inertia is a scalar quantity for which it can be added, the moment of total inertia would be the moment of inertia of the man (cylinder) plus the moment of inertia of each arm

        I₁ = I_man + 2 I_ arm

Man indicates that we can approximate them to a cylinder where the average diameter is

         d = (d₁ + d₂) / 2

         d = (106.68 + 96.52) 10-2 = 101.6 10⁻² m

The average radius is

         r = d / 2 = 50.8 10⁻² m = 0.508 m

The mass of the trunk is the mass of man minus the masses of each arm.

        M = M_man - 0.2 M_man = 80 (1-0.2)

        M = 64 kg

The moments of inertia are:

A cylinder with respect to a vertical axis:         Ic = ½ M r²

A rod that rotates at the end:                            I_arm = 1/3 m L²

Let us note that the arm rotates with respect to man, but this is at a distance from the axis of rotation of the body, so we must use the parallel axes theorem for the moment of inertia of the arm with respect to e = of the body axis.

           I1 = I_arm + m D²

Where D is the distance from the axis of rotation of the arm to the axis of the body

          D = d / 2 = 101.6 10⁻² /2 = 0.508 m

Let's replace

          I₁ = ½ M r² + 2 [(1/3 m L²) + m D²]

Let's calculate

         I₁ = ½ 64 (0.508)² + 2 [1/3 8 1² + 8 0.508²]

         I₁ = 8.258 + 5.33 + 4.129

         I₁ = 17,717 Kg m² / s²

Now let's calculate the moment of inertia with our arms at our sides, in this case the distance L = 0,

          I₂ = ½ M r² + 2 m D²

          I₂ = ½ 64 0.508² + 2 8 0.508²

          I₂ = 8,258 + 4,129

          I₂ = 12,387 kg m² / s²

The relationship between these two magnitudes is

          I₁ / I₂ = 17,717 /12,387

          I₁ / I₂ = 1.43

3 0
3 years ago
A person on a bicycle travels a distance of 12.5 km in 2.1 hrs, what was the speed of the person on the bicycle?
Leona [35]

Answer:

5.9 km/hour

Explanation:

divide 12.5 by 2.1 and the answer is 5.9

8 0
2 years ago
A star's life is a battle between what two forces?
Nana76 [90]
The outward push of the core created by nuclear fusion and the inward pull of gravity from the core
6 0
4 years ago
Read 2 more answers
PLEASE HELP ME WITH THIS
Kitty [74]

Answer:

i think it might be c but i know its not A or B and im

on the fence for D so the best answer would be C

Explanation:

3 0
3 years ago
A particle charge of 2.7 µC is at the center of a Gaussian cube 55 cm on edge. What is the net electric flux through the surface
Alexxx [7]

Answer:

3.05×10⁵ Nm²C⁻¹

Explanation:

According to Gauss' law,

∅' = q/e₀............... Equation 1

Where ∅' = net flux through the surface, q = net charge, e₀ = electric permittivity of the space

From the question,

Given: q = 2.7 μC = 2.7×10⁻⁶ C,

Constant: e₀ = 8.85×10⁻¹² C²/N.m²

Substituting these values into equation 1

∅' = (2.7×10⁻⁶)/(8.85×10⁻¹²)

∅' = 3.05×10⁵ Nm²C⁻¹

3 0
3 years ago
Other questions:
  • How far does a roller coaster travel if it accelerates at 2.83 m/s2 from an initial
    5·1 answer
  • Which of the outer planets would you most likely visit? Why? What would you see on your visit?
    9·2 answers
  • At the starting gun a runner accelerates from rest at 1.9 m/s2 for 2.2s. What is the runner’s speed 2s after she starts running?
    5·1 answer
  • A superball with a mass m = 61.6 g is dropped from a height h = [02]____________________ m. It hits the floor and then rebounds
    7·1 answer
  • according to newton's law of universal gravitation, in which of the following situations does the gravitational attraction betwe
    10·1 answer
  • An Alaskan rescue plane traveling 37 m/s drops a package of emergency rations from a height of 134 m to a stranded party of expl
    11·1 answer
  • A 2 kg mass connected to a spring with spring constant k = 10 N/m oscillates in simple harmonic motion with an amplitude of A =
    5·1 answer
  • What 2 waves in the electromagnetic spectrum overlap and have the same frequency?
    15·1 answer
  • Which statement best describe genetic marital
    8·1 answer
  • The voltage supplied to a circuit is 17 V and the current running through is 10 A. What is the power generated?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!