

- <u>The </u><u>sum</u><u> </u><u>of </u><u>the </u><u>number </u><u>in </u><u>each </u><u>of </u><u>the </u><u>four </u><u>rows </u><u>is </u><u>the </u><u>same </u>
- <u>The </u><u>sum </u><u>of </u><u>the </u><u>numbers </u><u>in </u><u>each </u><u>of </u><u>the </u><u>three </u><u>columns </u><u>is </u><u>the </u><u>same</u>
- <u>The </u><u>sum </u><u>of </u><u>any </u><u>row </u><u>does </u><u>not </u><u>equal </u><u>the </u><u>sum </u><u>of </u><u>any </u><u>column </u>

<u>According </u><u>to </u><u>the </u><u>Second</u><u> </u><u>rule </u><u>:</u><u>-</u>


<u>According </u><u>to </u><u>the </u><u>first </u><u>rule </u><u>:</u><u>-</u><u> </u>


<u>From </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u> </u><u>we </u><u>got </u><u>:</u><u>-</u>



<u>Subsitute </u><u>(</u><u>3</u><u>)</u><u> </u><u>in </u><u>(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>:</u><u>-</u>


<u>We</u><u> </u><u>can </u><u>write </u><u>it </u><u>as </u><u>:</u><u>-</u>



<u>Subsitute </u><u>the </u><u>value </u><u>of </u><u>c </u><u>and </u><u>e </u><u>in </u><u>(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>


<u>Now</u><u>, </u>









Hence, The value of a, b, c, d and e is 23, 31 ,60 ,33 and 51 .
Answer:
BD = 16
Step-by-step explanation:
32/BD = BD/8
BD² = 256
BD = 16
Almost positive isosceles triangle
Answer:
c)
Step-by-step explanation:
create a system of equations:
d + m = 104
2d + 3m = 243
now use substitution method based on 'd = 104 - m'
2(104 - m) + 3m = 243
208 - 2m + 3m = 243
208 + m = 243
m = 35
So, 35 muffins and 69 donuts were sold.
This is 34 more donuts than muffins.
Answer:
The generalisation she can make from her work is that the other two angles of the quadrilateral are supplementary i.e their sum is 180°
Step-by-step explanation:
We are given the following from what she knows
m∠3=2⋅m∠1... 1
m∠2=2⋅m∠4 ... 2
m∠2+m∠3=360 ... 3
From what is given, we can substitute equation 1 and 2 into equation 3 as shown:
From 3:
m∠2+m∠3=360
Substituting 1 and 2 we will have:
2⋅m∠4 + 2⋅m∠1 = 360
Factor out 2 from the left hand side of the equation
2(m∠4+m∠1) = 360
Divide both sides by 2
2(m∠4+m∠1)/2 = 360/2
m∠4+m∠1 = 180°
Since the sum of two supplementary angles is 180°, hence the generalisation she can make from her work is that the other two angles of the quadrilateral are supplementary i.e their sum is 180°