Answer:
Useful Output = 35 J
Explanation:
The useful energy output of the car must be equal to the difference between the total input energy supplied to the car and the energy wasted by the car:
Useful Output = Total Input - Waste
where,
Total Input = 120 J
Waste = 85 J
Therefore,
Useful Output = 120 J - 85 J
<u>Useful Output = 35 J</u>
The correct answer would be answer c ........
Answer:
3141N or 3.1 ×10³N to 2 significant figures. The can experiences this inward force on its outer surface.
Explanation:
The atmospheric pressure acts on the outer surface of the can. In order to calculate this inward force we need to know the total surface area of the can available to the air outside the can. Since the can is a cylinder with a total surface area given by 2πrh + 2πr² =
A = 2πr(r + h)
Where h = height of the can = 12cm
r = radius of the can = 6.5cm/2 = 3.25cm
r = diameter /2
A = 2π×3.25 ×(3.25 + 12) = 311.4cm² = 311.4 ×10-⁴ = 0.031m²
Atmospheric pressure, P = 101325Pa = 101325 N/m²
F = P × A
F = 101325 ×0.031.
F = 3141N. Or 3.1 ×10³ N.
Answer:
I think its the last one
Explanation:
The particles always move perpendicular to the direction of the wave.
The magnitude of force acting on wire will be 1.90 N and the direction of the force acting on the wire will be 41.9 degrees below the negative y axis.
Explanation:
It is known that the force acting on a current carrying conductor placed in a magnetic field is

Here B is the magnetic field, I is the current flowing through the wire and L is the length of the wire which is given as 44 cm.
Since the wire is bended in the middle at right angle so the length of the two sides of the wire will be 22 cm each. Also one part is lying over z axis and another part lies in the plane of xy in the equation of line y = 2x. So the slope of this wire will be

This will be equal to tan θ.
So θ = tan⁻¹ (2) =63.4°
Then, the length of the wire will be written as components of i, j and k.


Then,
F = I (L × B)

![F = 20.5 (\left[\begin{array}{ccc}i&j&k\\0.098&0.197&-0.22\\0.316&0&0\end{array}\right] )](https://tex.z-dn.net/?f=F%20%3D%2020.5%20%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C0.098%260.197%26-0.22%5C%5C0.316%260%260%5Cend%7Barray%7D%5Cright%5D%20%29)


The magnitude of force on the wire will be

And the direction can be found by the tan inverse of the ratio of k component to j component of the force.

So the magnitude of force acting on wire will be 1.90 N and the direction of the force acting on the wire will be 41.9 degrees below the negative y axis.