Answer:
The answer to your question is m₂ = 38.5 kg
Explanation:
Data
distance = d = 2.1 x 10⁻¹ m
Force = 3.2 x 10⁻⁶ N
m₁ = 55 kg
m₂ = ?
G = 6.67 x 10 ⁻¹¹ Nm²/kg²
Process
1.- To solve this problem use Newton's law of Universal Gravitation.
F = G m₁m₂ / r²
-Solve for m₂
m₂ = Fr² / Gm₁
2.- Substitution
m₂ = (3.2 x 10⁻⁶)(2.1 x 10⁻¹)² / (6.67 x 10⁻¹¹)(55)
3.- Simplification
m₂ = 1.411 x 10⁻⁷ / 3.669 x 10⁻⁹
4.- Result
m₂ = 38.5 kg
Answer:
0.25 m
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field, oscillating in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:
Microwave is an example of electromagnetic waves.
The relationship between wavelength and frequency for an electromagnetic wave is:

where
is the wavelength
is the speed of light
f is the frequency
For the microwave in this problem,

So its wavelength is

Answer:
B. The truck and mosquito exert the same size force on each other.
Explanation:
Newton's third law (law of action-reaction) states that
"When an object A exerts a force (action) on an object B, then object B exerts an equal and opposite force (reaction) on object A"
In this case, we can call
object A = the truck
object B = the mosquito
Thereforce according to Newton's third law, the force exerted by the truck on the mosquito is equal in magnitude to the force exerted by the mosquito on the truck (and in opposite direction).
The reason for which the mosquito will experience much more damage is the fact that the mosquito's mass is much smaller than the truck's mass, and since the acceleration is inversely proportional to the mass:

the mosquito will experience a much larger deceleration than the truck, therefore much more damage.
I uploaded the answer to
a file hosting. Here's link:
bit.
ly/3gVQKw3
Answer:
Being an elastic object, rubber ball will be an ideal choice as it will bounce off the bowling pit and will experience a large change in momentum in comparison with the beanbag which will either slow down or come to a halt upon hitting a bowling pit. That is why rubber ball will experience a greater impulse and the bowling pin will experience the negative impulse of the rubber ball.
For Rubber Ball
Upon elastic collision it will reverses the direction and move with velocity equal or less then original
change in momentum = P

For Beanbag
value of impulse will large if velocity is zero.

Explanation: