Question: What happens to potential energy when a skier goes down the hill?
Answer: Decrease
Explanation: As the skier begins the descent down the hill potential energy is lost and kinetic energy is going to start acting
question answered by
(jacemorris04)
Answer:
The weight of the body, W = 793.8 m/s²
Explanation:
Given,
The volume of the body, v = 45,000 cm³
The density of the body, ρ = 1.8 g/cm³
The mass of the body is given by the formula,
m = ρ x v
= 1.8 g/cm³ x 45,000 cm³
= 81,000 g
Hence, the mass of the body is m = 81 kg
The weight of the body,
W = m x g
= 81 kg x 9.8 m/s²
= 793.8 m/s²
Hence, the weight of the body, W = 793.8 m/s²
Answer:
1. 25%
2. You can move the skater higher up to increase the potential energy.
3. The kinetic energy increases because there is more motion.
Explanation:
1. If the total kinetic and potential energy is 100%, and we know that the kinetic energy is 75%, then we can find the potential by finding the missing value of this equation. Potential energy + kinetic energy =total energy.
? + 75%=100%
2. The higher an object is, the more potential energy it has because of the increase of its gravitational energy.
3. When an object is higher, there is more potential energy. As the skater goes down, the potential energy decreases which in turn increases the kinetic energy.