Answer:
The correct option is (b).
Explanation:
We need to find the work done to increase the speed of a 1 kg toy car by 5 m/s.
We know that, the work done is equal to the kinetic energy of an object i.e.

So, 12.5 J of work is done to increase the speed of a 1.0 kg toy car by 5.0 m/s.
Answer:
Because the mechanical advantage of the machine is affected by friction and weight but velocity ratio is not. So, mechanical advantage is less than velocity rate. Thus, the machine's efficiency is less than 100% and can't be a perfect machine
I'm pretty sure it's sunscreen
Answer:
1.
Explanation:
Hello!
In this case, for such mathematical operations, we can wee that the slash represents a fraction or a division, say 8 ÷ 4 = 2, 6 ÷ 3 = 2, 20 ÷ 4 = 5, etc. In such a way, since the operation 2/2, represents 2 ÷ 2, it is clear that two is once in 2, therefore, the result is:
2 ÷ 2 = 1.
Best regards!
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.