The correct answer to this question is D
Answer:

Explanation:
We can calculate the acceleration experimented by the passenger using the formula
, taking the initial direction of movement as the positive direction and considering it comes to a rest:

Then we use Newton's 2nd Law to calculate the force the passenger of mass m experimented to have this acceleration:

Which for our values is:

Hey There,
Question: "<span>A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant speed. When drawing the free body diagram for the block of dry ice moving at a constant speed, the forces that should be included are: (select all that apply)"
Answer: C. Force Of Friction
B. Force
If This Helps May I Have Brainliest?</span>
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


A wooden log is displaced to a distance of 20m in 10 seconds by applying 500N effort . Calculate the workdone and power...
Solution,
displacement = 20 m
time = 10 sec
force = 500 N
work done = ?
power = ?
Now ,
work done = f × s
= 500 N × 20 m
= 10000 j
Now ,

~nightmare 5474~