To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
Mass and height
Explanation:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. The most common use of gravitational potential energy is for an object near the surface of the Earth where the gravitational acceleration can be assumed to be constant at about 
Which is represented as;

stands for gravitational potantial energy,
m stands for mass of object,
g is the gravitational constant and
h is the height.
Here we see that mass of object and height is directly proportional to the gravitational potential energy.
That means increasing in mass and height will result in increasing gravitational potential energy.
True.
A contact force is a force between two objects that are physically in contact with each other: an example of a contact force is the normal reaction of a table supporting a book.
A non-contact force is a force between two objects that are not physically in contact with each other: an example of non-contact force is the gravitational attraction between the Earth and the Moon.
Answer:
(a) T = 10 s
(b) f = 0.1 Hz
(c) λ = 32 m
(d) v = 3.2 m/s
(e) Insufficient data
Explanation:
(a)
Time period is defined as the time interval required for one wave to pass. Therefore, the time period can be given as:
T = Period = Time Taken/No. of Waves
T = 50 s/5
<u>T = 10 s</u>
<u></u>
(b)
Frequency is the reciprocal of time period:
f = frequency = 1/T
f = 1/10 s
<u>f = 0.1 Hz</u>
<u></u>
(c)
Wavelength is the distance between two consecutive crests or troughs:
<u>λ = Wavelength = 32 m</u>
<u></u>
(d)
Speed of wave is given by the following formula:
Speed = v = fλ
v = (0.1 Hz)(32 m)
v = 3.2 m/s
(e)
Amplitude cannot be found with given data.
Answer:
r=6.05km/hr
z=59.1 degree to the horizontal
Explanation:
A bird is flying east at 5.2 kilometers/hour relative to the air. There's a crosswind blowing at 3.1 kilometers/hour toward the south relative to the ground. What is the bird's velocity relative to the ground? State your answer to one decimal place
can be solved using pythagoras theorem
r^2=o^2+a^2
r^2=5.2^2+3.1^2
r^2=36.65
r=6.1km/hr is te birds velocity relative to the ground
tanz=5.2/3.1
z=tan^-1(5,2/3.1)
z=59.1 degree to the horizontal