In this case, Coulomb's Law applies:
F = 1/(4πε₀) · (Q₁Q₂/r²)
You can solve it for r:
r = √[1/(4πε₀) · (Q₁Q₂/F<span>)]
Plugging in numbers:
r = </span>√[1/(4π·8.85×10⁻¹²) · (2.5×10⁻⁶)²/0.50]
= 0.335m
The correct answer is: the two charges are 0.335m apart.
The whiter the color the more young it is and the more energy it emits
Answer:
Correct answer: Third statement P = 4900 W
Explanation:
Given:
m = 500 kg the mass of the elevator
h = 10 m reached height after t = 10 seconds
P = ? power of the motor
The formula for the calculating power of the motor is:
P = W / t
since work is a measure of change in this case of potential energy then it is:
W = ΔEp = Ep - 0 = Ep
In this case we must take g = 9.81 m/s²
Ep = m g h = 500 · 9.81 · 10 = 49,050 W ≈ 49,000 W
Ep ≈ 49,000 W
P = Ep / t = 49,000 / 10 = 4,900 W
P =4,900 W
God is with you!!!
Answer:
A) 
B) 
C) 
Explanation:
Given:
- mass of flywheel,

- diameter of flywheel,

- rotational speed of flywheel,

- duration for which the power is off,

- no. of revolutions made during the power is off,

<u>Using equation of motion:</u>



Negative sign denotes deceleration.
A)
Now using the equation:


is the angular velocity of the flywheel when the power comes back.
B)
Here:

Now using the equation:


is the time after which the flywheel stops.
C)
Using the equation of motion:


revolutions are made before stopping.
To solve this problem it is necessary to use the concepts related to Snell's law.
Snell's law establishes that reflection is subject to

Where,
Angle between the normal surface at the point of contact
n = Indices of refraction for corresponding media
The total internal reflection would then be given by





Therefore the
would be equal to



Therefore the largest value of the angle α is 30.27°