After reading this whole question, I feel like I've already
earned 5 points !
-- Two satellites at the same distance, different masses:
The forces of gravity between two objects are directly
proportional to the product of the objects' masses. In
other words, the gravitational forces between the Earth
and an object on its surface are proportional to the mass of
the object. In other words, people with more mass weigh more
on the Earth, and the Earth weighs more on them.
If the satellites are both at the same distance from Earth,
then the Earth pulls on the one with more mass with greater
force, and also the one with more mass pulls on the Earth
with greater force.
-- Two satellites with the same mass, at different distances:
The forces of gravity between two objects are inversely
proportional to the square of the distance between them.
In other words, the gravitational
forces between the Earth
and an object are inversely proportional
to the square of
the distance between the object and the center of the Earth.
If
the satellites both have the same mass, then the Earth
pulls on the nearer one with greater force, and also the
nearer one pulls on the Earth with greater force.
-- Resistor in a circuit when the voltage changes:
The resistance depends on how the resistor was manufactured.
Its resistance is marked on it, and doesn't change. It remains
the same whether the voltage changes, the current changes,
the time of day changes, the cost of oil changes, etc.
If you increase the voltage in the circuit where that resistor is
installed, the current through the resistor increases. If the current
remains constant, then you can be sure that somebody snuck over
to your circuit when you weren't looking, and they either installed
another resistor in series with the original one to make the total
resistance bigger, or else they snipped the original one out of the
circuit and quickly connected one with more resistance in its place.
Answer:
The answer is D because when the faults move that is the tectonic plates moving. So earth quakes will be forming when the fault moves.
Explanation:
Answer:
(a)106.4C
b)0.5676mm
Explanation:
(a)To get the charge that have passed through the starter then The current will be multiplied by the duration
I= current
t= time taken
Q= required charge
Q= I*t = 140*0.760 = 106.C
(b) b. How far does an electron travel along the wire while the starter motor is on?(mm)
diameter of the conductor is 4.20 mm
But Radius= diameter/2= 4.20/2=
The radius of the conductor is 2.1mm, then if we convert to metre for consistency same then
radius of the conductor is 0.0021m.
We can now calculate the area of the conductor which is
A = π*r^2
= π*(0.0021)^2 = 13.85*10^-6 m^2
We can proceed to calculate the current density below
J = 140/13.85*10^-6 = 10108303A/m
According to the listed reference:
Where e= 1.6*10^-19
n= 8.46*10^28
Vd = J/(n*e) = 10108303/ ( 8.46*10^28 * 1.6*10^-19 ) =0.0007468m/s=0 .7468 mm/s
Therefore , the distance traveled is:
x = v*t = 0.7468 * 0.760 = 0.5676mm
Answer:
Yes energy does take up space.
Explanation:
Every form of energy has a defining characteristic; sound is the vibration of molecules, electricity is the movement of electrons, and mass is the thing that take up space.
Answer:
Moment of inertia is the inertia of a rotating body with respect to its rotation. So basically it's the object's resistance to a rotational acceleration. This relates to Newton's first law! What does that exactly mean? Let's check out the explanation.
One formula that it is written in is I= mr
Explanation:
As Bill Nye says, "Inertia is a property of matter. Objects that are not moving don't move unless they get pushed or pulled. Moving objects keep moving unless they get pushed or pulled. This feature of objects and materials is what we call inertia."
I would check out Dan Fullerton's concept
and Organic Chemistry