Talking about a quantity of inertia is exactly the same as talking about a quantity of mass. So, if the boxes are anywhere near the same size, then the box of books has <u><em>more</em></u> inertia than the box of cotton balls, because books have more mass than an identical volume of cotton.
The kinematic equations of motion that apply here are<span>y(t)=votsin(θ)−12gt2</span>and<span>x(t)=votcos(θ)</span>Setting y(t)=0 yields <span>0=votsin(θ)−12gt2</span>. If we solve for t, we obtain, by factoring,<span>t=<span>2vsin(θ)g</span></span>Substitute this into our equation for x(t). This yields<span>x(t)=<span><span>2v2cos(θ)sin(θ)</span>g</span></span><span>This is equal to x=<span><span>v^2sin(2θ)</span>g</span></span>Hence the angles that have identical projectiles are have the same range via substitution in the last equation is C. <span> 60.23°, 29.77° </span>
Answer:
let me check the answer for you
they are added vectorially. If htere is a resultant force, the thing acclerates. If they vectorially add to zero, thing doesn't move