Answer: 9 days
Explanation:
Let the rate of Leaf growth <em>r</em> be defined as,
= 
where <em>A</em> is initial area of the leaf, <em>A1</em> is the final area of the leaf and<em> t</em> is the time taken for the increase in Area.
- Express the proportional relationship in equation.
Given that rate of leaf growth, r is proportional to the surface area of the leaf A. we have r ∝ A.
r = kA, where k is the rate constant.
therefore, k = 
when A = 2
, A1 = 3
so k = 
=
÷ 2
= 0.33 ÷ 2
k = 0.167
- After calculating the rate constant k, we then find the time t when A1 is 5

- we have r = k × A1 =

so, 0.167 × 2 = 
0.33 =
.
t = 3/0.33
Therefore, t = 9 days.
Answer:constant cause it keeps happening Or it might be decreasing but I’m not sure
Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of spacesuits exist for different purposes: IVA (intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity). IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeorites and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
Answer:
The amount of energy that would be released is equal to 4182 Joules.
Explanation:
Total amount of coke = 2 kg = 2000 g
1 calorie per gram is equal to 4.184 Joules of energy
4.184 J/gC*2000g = 8368 J
1 food calorie is roughly equal to 4186 J
8368 - 4186
Therefore, the amount of energy that would be released is equal to 4182 Joules.
Answer:
W = 28226.88 N
Explanation:
Given,
Mass of the satellite, m = 5832 Kg
Height of the orbiting satellite from the surface, h = 4.13 x 10⁵ m
The time period of the orbit, T = 1.9 h
= 6840 s
The radius of the planet, R = 4.38 x 10⁶ m
The time period of the satellite is given by the formula
second
Squaring the terms and solving it for 'g'
g = 4 π²
m/s²
Substituting the values in the above equation
g = 4 π²
g = 4.84 m/s²
Therefore, the weight
w = m x g newton
= 5832 Kg x 4.84 m/s²
= 28226.88 N
Hence, the weight of the satellite at the surface, W = 28226.88 N