Answer:
The answer to the question is
4433.416 kJ
See explanation below
(3-y)²+r² = 3² or
6y-y² = r²
r =√(6y-y²)
The volume of a small section of height Δy = Δy ×(√(6y-y²))²×π
For water with density of 1000 kg/m³, the mass of the slice
= 1000×Δy ×(√(6y-y²))²×π and since force = mass × acceleration we have
1000×Δy ×(√(6y-y²))²×π ×g = 1000×Δy ×(√(6y-y²))²×π ×9.81
The work done to move a unit height of y+1 = Force × Distance
W = 1000×Δy ×(√(6y-y²))²×π ×9.81 × (y+1)
Integrating the entire section of the sphere that is 2×r high, or from 0 to 6 we get
W =
= 
![= 9810*\pi *[\frac{5y^{3} }{3} -\frac{y^{4} }{4} +3y^{2} ]^{6} _{0}](https://tex.z-dn.net/?f=%3D%209810%2A%5Cpi%20%2A%5B%5Cfrac%7B5y%5E%7B3%7D%20%7D%7B3%7D%20-%5Cfrac%7By%5E%7B4%7D%20%7D%7B4%7D%20%2B3y%5E%7B2%7D%20%5D%5E%7B6%7D%20_%7B0%7D)
=9810×π×144 =4433416 J
Answer:
The energy may be carried in the form of (1) radiation, where energy travels in the form of light, and (2) convection, where energy is carried by physical motion of upwelling solar gas.
Explanation:
9 × 10²¹ electrons flow through a cross section of the wire in one hour.
<h3>What is the relation between current and charge?</h3>
- Mathematically, current = charge / time
- In S.I. unit, Charge is written in Coulomb and time in second.
<h3>What is the amount of charge flown through a wire for one hour if it carries 0.4 A current?</h3>
- Charge= current × time
- Current= 0.4 A, time = 1 hour= 3600 s
- Charge= 0.4× 3600
= 1440 C
<h3>How many numbers of electrons present in 1440C of charge?</h3>
- One electron= 1.6 × 10^(-19) C
- So, 1440 C = 1440/1.6 × 10^(-19)
= 9 × 10²¹ electrons
Thus, we can conclude that the 9 × 10²¹ electrons flow through a cross section of the wire in one hour.
Learn more about current here:
brainly.com/question/25922783
#SPJ1
Answer:
Explained
Explanation:
Compared to Jupiter, Saturn's atmosphere is more calm with fewer disturbances or storms.
The Atmosphere in Jupiter is highly violent and thinner as compared with Saturn.
The layers of atmosphere on Saturn is thicker because of lower gravity of Saturn and hence they are calmer.
Answer:
The time constant is 1.049.
Explanation:
Given that,
Charge 
We need to calculate the time constant
Using expression for charging in a RC circuit
![q(t)=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=q%28t%29%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)
Where,
= time constant
Put the value into the formula
![0.65q_{0}=q_{0}[1-e^{-(\dfrac{t}{RC})}]](https://tex.z-dn.net/?f=0.65q_%7B0%7D%3Dq_%7B0%7D%5B1-e%5E%7B-%28%5Cdfrac%7Bt%7D%7BRC%7D%29%7D%5D)





Hence, The time constant is 1.049.