Answer:

Explanation:
Accoding to the First Law of Thermodynamics, the heat released by the water melts a portion of ice. That is to say:


The amount of ice that is melt is:

Answer: c = 710 J/kg°C or 0.71 J/g°C
Explanation: Heat is expressed in the formula Q = mc∆T. Derive to find the specific heat c. So the formula will become c = Q / m∆T
c = Q / m∆T
= 42600 J / 2 kg ( 55°C - 25°C )
= 710 J /kg°C
Or can be expressed by converting kg to g.
c = 0.71 J /g°C
Answer:
1.73 M
Explanation:
We must first obtain the concentration of the concentrated acid from the formula;
Co= 10pd/M
Where
Co= concentration of concentrated acid = (the unknown)
p= percentage concentration of concentrated acid= 37.3%
d= density of concentrated acid = 1.19 g/ml
M= Molar mass of the anhydrous acid
Molar mass of anhydrous HCl= 1 +35.5= 36.5 gmol-1
Substituting values;
Co= 10 × 37.3 × 1.19/36.5
Co= 443.87/36.6
Co= 12.16 M
We can now use the dilution formula
CoVo= CdVd
Where;
Co= concentration of concentrated acid= 12.16 M
Vo= volume of concentrated acid = 35.5 ml
Cd= concentration of dilute acid =(the unknown)
Vd= volume of dilute acid = 250ml
Substituting values and making Cd the subject of the formula;
Cd= CoVo/Vd
Cd= 12.16 × 35.5/250
Cd= 1.73 M
Answer:
The entropy of the final solution decreases, as the reaction disorder is less.
Explanation:
The higher the temperature, the greater the heat of the reaction and the greater the disorder it has, so the entropy will increase ... But this is not the case, since the solution cools, decreasing the entropy proportionally.