<span>The development of airbags began with the idea for a system that would restrain automobile drivers and passengers in an accident, whether or not they were wearing their seat belts. The road from that idea to the airbags we have today has been long, and it has involved many turnabouts in the vision for what airbags would be expected to do. Today, airbags are mandatory in new cars and are designed to act as a supplemental safety device in addition to a seat belt. Airbags have been commonly available since the late 1980's; however, they were first invented (and a version was patented) in 1953. The automobile industry started in the late 1950's to research airbags and soon discovered that there were many more difficulties in the development of an airbag than anyone had expected. Crash tests showed that for an airbag to be useful as a protective device, the bag must deploy and inflate within 40 milliseconds. The system must also be able to detect the difference between a severe crash and a minor fender-bender. These technological difficulties helped lead to the 30-year span between the first patent and the common availability of airbags.</span>
<span>Fluorine, chlorine, bromine, and iodine grouped together because they have the same chemical and physical properties. They are also called halogens and under Group 7</span>
Answer:
Gravitational potential energy transforms into thermal energy.
Explanation:
Answer:
This process is known as doping. It can be done by adding either of two types of impurity to the crystal.
(A) By adding electron rich impurities i.e., group 15 elements to the silicon and germanium of group 14 elements.
hope it's helpful
There are one antibonding molecular orbitals present in molecular orbital model of c.
The cyclobutadiene has a pi system comprised of four individual atomic p - orbital and thus should have a four pi molecular orbitals. The compound is the prototypical antiaromatic hydrocarbon with 4
- electrons . Its rectangular structure is the result of jahn teller reaction which disorder the molecule and lowers its symmetry , converting the triplet to a singlet ground state. It is a small annulene . The delocalisation energy of the
electrons of the cyclobutene is predicted to be zero .
To learn more about antibonding molecular orbitals click here
brainly.com/question/14970060
#SPJ4