Answer:
. ¿Qué
Explanation:
Hope you have a great day
Answer:
1.15 M
Explanation:
Step 1: Given data
- Initial volume (V₁): 0.125 L
- Initial concentration (C₁): 3.00 M
- Final volume (V₂): 0.325 L
- Final concentration (C₂): ?
Step 2: Calculate the final concentration of the solution
We want to prepare a dilute solution from a concentrated one by adding water. We can calculate the concentration of the dilute solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 3.00 M × 0.125 L/0.325 L = 1.15 M
Answer:
10.8 days (3 sig.figs.)
Explanation:
All radioactive decay is 1st order decay defined by the expression A = A₀e^-kt
which is solved for time of decay (t) => t = ln(A/A₀) / -k
A = final weight = 1.0 gram
A₀ = initial weight = 16.0 grams
k = rate constant = 0.693/t(1/2) = 0.693/2.69 days = 0.258 days⁻¹
t = ln(1/16) / -0.258da⁻¹ = (-2.77/-0.258) days = 10.74646792 days (calculator)
≅ 10 days (1 sig. fig. based on given 1 gram mass)
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
Answer:
YES YES YES YES YES YES YES YES YES YES YES YES