Answer:
Samira's model is incorrect because not all atoms are accounted for
Explanation:
The image of Samira's model has been attached to this answer to enhance the explanation.
What is depicted in that model is rightly regarded as a chemical change. In a chemical change atoms of substances are rearranged as new substances are formed.
However, all atoms in the products must also be found in at least one of the reactants. In this case we have an atom in one of the products that is not accounted for. Hence the model is incorrect.
It's worth noting that butane is also referred to as n-butane. ... Based on the diagram, butane is considered to be an alkane. It not only contains single covalent bonds, but also has carbon and hydrogen atoms present in its structure.
Answer:
Like any wave, a sound wave doesn't just stop when it reaches the end of the medium or when it encounters an obstacle in its path. Rather, a sound wave will undergo certain behaviors when it encounters the end of the medium or an obstacle. Possible behaviors include reflection off the obstacle, diffraction around the obstacle, and transmission (accompanied by refraction) into the obstacle or new medium
Answer:
I'm converting this if I could remember how
2.882568
2 110321/ 125000
T-T sorry if I'm wrong I have bad memory
so I recommend not using my answer at all,
if that is even how y'all write it.
Answer:
100 teragrams of nitrogen per year
Explanation:
Nitrogen fixation in Earth's ecosystems is defined as a process where by nitrogen in air is transformed into ammonia or other related nitrogenous compounds. Generally, atmospheric nitrogen is referred to as molecular dinitrogen and it is a nonreactive compound that is metabolically useless to all but a few microorganisms. This process is vital to life due to the fact that inorganic nitrogen compounds are needed for the biosynthesis of amino acids, protein, and all other nitrogen-containing organic compounds. Thus, the natural rate of nitrogen fixation in Earth's ecosystems is 100 tetragrams of nitrogen per year.