Answer:
T₂ = 317.87 K
Explanation:
Given data:
Initial pressure = 15 atm
Final pressure = 16 atm
Initial temperature = 298 K
Final temperature = ?
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
15 atm / 298K = 16 atm/T₂
T₂ = 16atm × 298 K / 15 atm
T₂ = 4768 atm. K / 15 atm
T₂ = 317.87 K
Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Answer:
The energy of the particles increase and the molecules move more quickly.
Explanation:
The molecules are moving from a solid (barely moves, molecules close together) to a liquid (molecules slide past each other and take any shape), so molecules are moving more and have more energy
Answer:
different sizes of the parachute
Explanation:
this is what is being changed throughout the experiment
sound wave cannot travel without a medium.