X is 50. The lengths of the radii extending out from the center to the chords are the same length, therefore, the chords are the same distance from the center and have the same measure.
Answer:
y=5+2x
Normally I would explain it, but im in a bit of a hurry today. I apologize for the inconvenience!
Answer:
![\lim_{n \to \infty} U_n =0](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20U_n%20%3D0)
Given series is convergence by using Leibnitz's rule
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given series is an alternating series
∑![(-1)^{n} \frac{n^{2} }{n^{3}+3 }](https://tex.z-dn.net/?f=%28-1%29%5E%7Bn%7D%20%5Cfrac%7Bn%5E%7B2%7D%20%7D%7Bn%5E%7B3%7D%2B3%20%7D)
Let ![U_{n} = (-1)^{n} \frac{n^{2} }{n^{3}+3 }](https://tex.z-dn.net/?f=U_%7Bn%7D%20%3D%20%28-1%29%5E%7Bn%7D%20%5Cfrac%7Bn%5E%7B2%7D%20%7D%7Bn%5E%7B3%7D%2B3%20%7D)
By using Leibnitz's rule
![U_{n} - U_{n-1} = \frac{n^{2} }{n^{3} +3} - \frac{(n-1)^{2} }{(n-1)^{3}+3 }](https://tex.z-dn.net/?f=U_%7Bn%7D%20-%20U_%7Bn-1%7D%20%3D%20%5Cfrac%7Bn%5E%7B2%7D%20%7D%7Bn%5E%7B3%7D%20%2B3%7D%20-%20%5Cfrac%7B%28n-1%29%5E%7B2%7D%20%7D%7B%28n-1%29%5E%7B3%7D%2B3%20%7D)
![U_{n} - U_{n-1} = \frac{n^{2}(n-1)^{3} +3)-(n-1)^{2} (n^{3} +3) }{(n^{3} +3)(n-1)^{3} +3)}](https://tex.z-dn.net/?f=U_%7Bn%7D%20-%20U_%7Bn-1%7D%20%3D%20%5Cfrac%7Bn%5E%7B2%7D%28n-1%29%5E%7B3%7D%20%2B3%29-%28n-1%29%5E%7B2%7D%20%28n%5E%7B3%7D%20%2B3%29%20%7D%7B%28n%5E%7B3%7D%20%2B3%29%28n-1%29%5E%7B3%7D%20%2B3%29%7D)
Uₙ-Uₙ₋₁ <0
<u><em>Step(ii):-</em></u>
![\lim_{n \to \infty} U_n = \lim_{n \to \infty}\frac{n^{2} }{n^{3}+3 }](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20U_n%20%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bn%5E%7B2%7D%20%7D%7Bn%5E%7B3%7D%2B3%20%7D)
![= \lim_{n \to \infty}\frac{n^{2} }{n^{3}(1+\frac{3}{n^{3} } ) }](https://tex.z-dn.net/?f=%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7Bn%5E%7B2%7D%20%7D%7Bn%5E%7B3%7D%281%2B%5Cfrac%7B3%7D%7Bn%5E%7B3%7D%20%7D%20%29%20%7D)
= ![= \lim_{n \to \infty}\frac{1 }{n(1+\frac{3}{n^{3} } ) }](https://tex.z-dn.net/?f=%3D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%5Cfrac%7B1%20%7D%7Bn%281%2B%5Cfrac%7B3%7D%7Bn%5E%7B3%7D%20%7D%20%29%20%7D)
![=\frac{1}{infinite }](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7Binfinite%20%7D)
=0
![\lim_{n \to \infty} U_n =0](https://tex.z-dn.net/?f=%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20U_n%20%3D0)
∴ Given series is converges