Answer:
Explanation:
area of the coil A = .08 x .08 = 64 x 10⁻⁴ m ²
flux through the coil Φ = area of coil x no of turns x magnetic field
= 64 x 10⁻⁴ x 50 x B where B is magnetic field
emf induced = dΦ / dt = ( 64 x 10⁻⁴ x 50 x B - 0 ) / .2
= 1.6 B
current induced = emf induced / resistance
12 x 10⁻³ = 1.6 B / 15
B = 112.5 x 10⁻³ T .
Picture? I may be able to answer if you have a chart or some kind of graph as a referral to the question
Steel paper clip because it can be moved by the magnet and it is lighter than the iron nail
You would probably have a low frequency due to how much the wavelength is spread out.
Answer:
The student hears the wave that is transmitted by the desk
Explanation:
Mechanical waves need a material medium to be able to be transmitted, in the case of sound waves, one of the most common media is air, but it is also transmitted in other media in this case, stationery is transmitted.
The student hears the wave that is transmitted by the desk
The speed of the wave is proportional to the density of the material, so the wave that the student hears arrives much faster through the desk than through the air