The three parts of the ear anatomy are the outer ear, the middle ear
and the inner ear. The inner ear is also called the cochlea. (‘Cochlea’
means ‘snail’ in Latin; the cochlea gets its name from its distinctive
coiled up shape.)
The outer ear consists of the pinna, ear canal and eardrum
The middle ear consists of the ossicles (malleus, incus, stapes) and ear drum
The inner ear consists of the cochlea, the auditory (hearing) nerve and the brain
Sound waves enter the ear canal and make the ear drum vibrate. This
action moves the tiny chain of bones (ossicles – malleus, incus, stapes)
in the middle ear. The last bone in this chain ‘knocks’ on the membrane
window of the cochlea and makes the fluid in the cochlea move. The
fluid movement then triggers a response in the hearing nerve.
or
<span>Sound waves enter the ear canal and make the ear drum vibrate. This action moves the tiny chain of bones (ossicles – malleus, incus, stapes) in the middle ear. The last bone in this chain 'knocks' on the membrane window of the cochlea and makes the fluid in the cochlea move.
please mark me as brainliest!!
</span>
Answer:
The answer is C "think about the problem first, systematically consider all factors, and form a hypothesis"
Explanation:
In physics there is some basic fomula that sir Isacc Newton proposed under the topic of motion. The three formulas are below;
<em>1) v=u+at</em>
<em>2)v^2=u^2+2as</em>
<em>3)s=ut+(1/2)(at^2)</em>
the variables are explained below;
u= initial velocity of the body
a=acceleration/Speed of the body
t= time taken by the body while travelling
s= displacement of the body.
Therefore to solve keatons problem, the factors(variables) in the formulas above need to be systematically considered. Since the ball was dropped from the top of the building, the initial velocity is 0 because the body was at rest. Also the acceleration will be acceleration due to gravity (9.8m/s^2)
Kinetic energy would increase sir.
Answer:
37.42 m/s
Explanation:
We know that apparent frequency,
is given by
where f is the given frequency in this case 392, V is the speed of sound in air which is given as 343 and
is the speed of car which is unknown, \bar f is given as 440 Hz

Answer: the airy pattern can only arise from wave propagation
Explanation:if particles went in straight lines through a slit, they would progate linearly and not interfere. The airy pattern arises from diffraction as waves interfere, producing peaks (constructive interference where peaks of waves from each slit coincide) and troughs (destructive interference where peaks and troughs of waves from each slit cancel out). If intensity rather than field is measured nodes occur where 0 values line up instead of troughs