Answer:
Sn and Ge
Explanation:
To obtain the more metallic element, we compare the group in which both elements are. Generally the element with the lower ionzation energy is he more metallic one.
Ionization energy increases fro left to right across a period. Ionization energy decreases down the group.
1. When comparing the two elements A s and S n , the more metallic element is ______based on periodic trends alone.
Sn has a lower ionization energy so it is the more metallic one.
2. When comparing the two elements G e and S b , the more metallic element is ________ based on periodic trends alone.
Ge has a lower ionizaiton energy compared to Sb. So it is more metallic element than Sb.
Answer:
A.
The moon's gravitational pull on Earth causes water to bulge on two sides of the Earth.
I do not believe you're asking this...
OK. Sulfur has a total of 24 isotopes. Every isotope has 16 protons and the number of neutrons ranges from 10 to 33 inclusive.
Phosphorus has a total of 23 isotopes. They have 15 protons, and between 9 and 31 neutrons inclusive. So here we go.
S-49
S-48
S-47, P-46
S-46, P-45
S-45, P-44
S-44, P-43
S-43, P-42
S-42, P-41
S-41, P-40
S-40, P-39
S-39, P-38
S-38, P-37
S-37, P-36
S-36, P-35
S-35, P-34
S-34, P-33
S-33, P-32
S-32, P-31
S-31, P-30
S-30, P-29
S-29, P-28
S-28, P-27
S-27, P-26
S-26, P-25
P-24
If you're looking for STABLE isotopes, then the list is much smaller.
S-36
S-34
S-33
S-32, P-31
molar concentration of AgNO₃ solution = 0.118 mole/L
Explanation:
Because we have the volume of the solution and there is no information about the density of the solution I will asume that you ask for the molar concentration.
number of moles = mass / molecular weight
number of moles of AgNO₃ = 10 / 170 = 0.0588
molar concentration = number of moles / volume (L)
molar concentration of AgNO₃ solution = 0.0588 / 0.5
molar concentration of AgNO₃ solution = 0.118 mole/L
Learn more about:
molar concentration
brainly.com/question/1286583
#learnwithBrainly
Answer:
47.1 L.
Explanation:
- To solve these problems, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 234.0 kPa/101.325 ≅ 2.31 atm) .
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 3.9 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K),
T is the temperature of the gas in K (T = 67.0 °C + 273.15 = 340.15 K).
The volume of the gas = nRT/P.
<em>∴ V = nRT/P </em>= (3.9 mol)(0.082 L.atm/mol.K)(340.15 K)/(2.31 atm) = <em>47.1 L.</em>