Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].
Answer:
elliptical orbit
Explanation:
There are three laws of planetary motion, which are called Kepler's law of planetary motion.
First Law : It states that all the planets revolve around the sun in an elliptical path and the sun is at one focus of that elliptical path.
Answer:
The pickup truck and hatchback will meet again at 440.896 m
Explanation:
Let us assume that both vehicles are at origin at the start means initial position is zero i.e.
= 0. Both the vehicles will cross each other at same time so we will make equations for both and will solve for time.
Truck:
= 33.2 m/s, a = 0 (since the velocity is constant),
= 0
Using 
s = 33.2t .......... eq (1)
Hatchback:
,
= 0 m/s (since initial velocity is zero),
= 0
Using 
putting in the data we will get

now putting 's' value from eq (1)

which will give,
t = 13.28 s
so both vehicles will meet up gain after 13.28 sec.
putting t = 13.28 in eq (1) will give
s = 440.896 m
So, both vehicles will meet up again at 440.896 m.