The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
Standard deviation = 3
Explanation:
Given


Required
Determine the standard deviation
First, we need to determine the variance;

This gives:



Know that:

Where SD represents standard deviation
This gives

Take square root


Answer:
Short circuit
Explanation:
The given figure shows a short circuit. It is defined as the circuit which allows the flow of electric current when there is no resistance. It shows a battery, bulb and connecting wires.
The wire across the bulb is connected from one terminal to another without any resistance in between them.
So, the correct option is (d) " short circuit ".
At the player's maximum height, their velocity is 0. Recall that

which tells us the player's initial velocity
is

The player's height at time
is given by

so we find their airtime to be

Answer:
A practical siphon, operating at typical atmospheric pressures and tube heights, works because gravity pulling down on the taller column of liquid leaves reduced pressure at the top of the siphon (formally, hydrostatic pressure when the liquid is not moving).
I hope it's helpful!