An Olympic high diver has gravitational potential energy because of her height. As she dives, kinetic energy becomes of her energy just before she hits the water.
Gravitational potential energy is the energy possessed or acquired by an object due to a change in its position when it is present in a gravitational field. In simple terms, it can be said that gravitational potential energy is an energy that is related to gravitational force or to gravity.
Kinetic energy is the energy of motion, observable as the movement of an object, particle, or set of particles.
When the high diver is standing stable and not moving , that diver has a gravitational potential energy because of the height . The moment she dives , before hitting the water , from being stationary she gained some momentum and come in motion , due to motion her gravitational potential energy will change to kinetic energy before hitting the ground.
To learn more about Gravitational potential energy here
brainly.com/question/15978356
#SPJ4
She should use shorter focal length to fit the entire landscape which she is trying to photograph into her picture.
What is focal length?
The focal length is a measure of how strongly the system converges or diverges light.
A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light.
For a standard rectilinear lens,
FOV = 2 arctan (x/2f)
FOV ∝ 1 / f
where x is the diagonal of the film.
Focal length (f) and field of view (FOV) of a lens are inversely proportional.
From the equation we can say that,
A shorter focal length gives you a wide angle of view which allows more view to fit in the frame.
Hence,
She should use shorter focal length to fit the entire landscape which she is trying to photograph into her picture.
Learn more about focal length here
<u>brainly.com/question/13885819</u>
<u />
#SPJ4
Answer:
C = 17 i^ - 7 j^ + 16 k^
, | C| = 24.37
Explanation:
To work the vactor component method, we add the sum in each axis
C = A + B = (Aₓ + Bₓ) i ^ + (
+
) i ^ + (
+
) k ^
Cₓ = 12+ 5 = 17
= -37 +30 = -7
= 58 -42 = 16
Resulting vector
C = 17 i ^ - 7j ^ + 16k ^
The mangitude of the vector is
| C | = √ c²
| C | = √( 17² + 7² + 16²)
| C| = 24.37
Answer:
Magnitude of force on wheel B is 4 N
Explanation:
Given that

For wheel A
m= 1 kg
d= 1 m,r= 0.5 m
F=1 N
We know that
T= F x r
T=1 x 0.5 N.m
T= 0.5 N.m
T= I α
Where I is the moment of inertia and α is the angular acceleration


T= I α
0.5= 0.25 α

For Wheel B
m= 1 kg
d= 2 m,r=1 m


Given that angular acceleration is same for both the wheel

T= I α
T= 1 x 2
T= 2 N.m
Lets force on wheel is F then
T = F x r
2 = F x 1
So F= 2 N
Magnitude of force on wheel B is 2 N