In the first tenth of a second in a collision, the vehicle and everything inside is going in different directions. This is because the initial reaction in a collision is for the objects to go into different directions which can be explained by Newton's third law.
To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
We know, speed = Distance / Time
d = 384,750 Km
t = 2 days, 19.5 hours = 48+19.5 = 67.5 hour
Substitute their values,
s = 384,750 / 67.5
s = 5700 Km/h
In short, Your Answer would be 5700 Km/h
Hope this helps!
Answer:
i think..its fraction that its have multiple fractions on it..if you minus the 397 000-355 it should be 381+ so i say if you get the 5 multiply it by 9!! so you will get it!
Explanation:
HOPE IT HELPS!!