Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:

We can solve this by integration:

but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law


This give us

As n, R and T are constants

![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)



But the volume is:



Now, lets use the value from the problem.
The temperature its:

The ideal gas constant:

So:


<h3>Heat</h3>
We know that, for an ideal gas, the energy is:

where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know

where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:


Of the forces listed I think the force of him diving and sliding across the infield acted on the player.
I think so because the slowing down was a result of an action, and I don’t think that should count as An action when it is the result of an action. However, the act of diving head-first into second base and sliding across the infield are independent actions and will cause friction, which will act upon the player.
Answer:
Explanation:
The radius of the smaller bubble, r1 will decrease and that of the bigger bubble, r2 will increase.
The pressure that is present in the smaller bubble usually is greater than the pressure that exists inside that of the bigger bubble. This then makes air to flow from r1 to r2 thereby making the radius of the smaller bubble r1, to decrease while keeping that of the bigger bubble r2 higher.
The first law of thermodynamics states that energy cannot be created nor destroyed. It can be transformed from one form of energy to another, but the energy in an isolated system remains constant.
The answer then would be letter B. False.
OMGG I LOVE LOVE LOVE the midnight summer's dream
Either A or D
Bottom's the donkey right?
I'm sure that it's D or A since I know C , Pease is a ... fairy?
Need to refresh my memory!