The redshift of distant galaxy are larger than those of closer galaxies, which indicates that the galaxy is receding at a faster rate.
- The Universe was 5 percent its current size when light left objects now at redshift of <u>19</u>.
Reasons:
The size of the universe represented as a scale factor with relation to the redshift can be presented as follows;

Where;
a₀ = The current size of the Universe
a = The size of the early Universe = 5% of a
Therefore;


0.05 + 0.05·z = 1

- The redshift is of the observed light is, z = <u>19</u>
Learn more here:
brainly.com/question/14459434
brainly.com/question/3654558
Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
Answer:
the answer is a time your welcome
Answer:21.18 m
Explanation:
Given
initial speed u=10 m/s
height of building h=22 m
time taken to complete 22 m

initial vertical velocity =0



Horizontal Distance moved



Answer:
Earth attract the Moon with a force that is greater.
Explanation:
According to the law of gravitation, the gravitational force between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
Mathematically, F1 = Gm1m2/r²... 1
Let m1 be the mass of the earth and m2 be that of the moon
If the Earth is much more massive than is the Moon, the new force of attraction between them will become;
F2= G(2m1)m2/r²
F2 = 2Gm1m2/r² ... (2)
Dividing eqn 1 by 2 we have;
F1/F2 = (Gm1m2/r²)÷(2Gm1m2/r²)
F1/F2 = Gm1m2/r²×r²/2Gm1m2
F1/F2 = 1/2
F2=2F1
This shows that that the earth will attract the moon by a force 2times the initial force of the masses(i.e a much greater force)