Answer:
The answer is "Choice E".
Explanation:
In this situation the option e is right because its resistance decreases through time, however, the time is the same for the same reason, whereas the sphere deteriorates, somehow it travels shorter distances however if the air resistance becomes are using the amplitude of movement declines, that's why other choices were wrong.
In order to tell a river lock attendant that you wish to go through the lock, you should <span>sound one prolonged blast followed by one short blast.
You should wait about 400 feet away from the lock and wait for the flashing light signal that allows you to enter.
Also note that </span><span>commercial traffic always have the first priority in entering the locks.</span>
Answer:
The beam used is a negatively charged electron beam with a velocity of
v = E / B
Explanation:
After reading this long statement we can extract the data to work on the problem.
* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.
* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

q E = qv B
v = E / B
this configuration is called speed selector
They ask us what type of beam was used.
The beam used is a negatively charged electron beam with a velocity of v = E / B
Answer:
a) F = 2.66 10⁴ N, b) h = 1.55 m
Explanation:
For this fluid exercise we use that the pressure at the tap point is
Exterior
P₂ = P₀ = 1.01 105 Pa
inside
P₁ = P₀ + ρ g h
the liquid is water with a density of ρ=1000 km / m³
P₁ = 0.85 1.01 10⁵ + 1000 9.8 5
P₁ = 85850 + 49000
P₁ = 1.3485 10⁵ Pa
the net force is
ΔP = P₁- P₂
Δp = 1.3485 10⁵ - 1.01 10⁵
ΔP = 3.385 10⁴ Pa
Let's use the definition of pressure
P = Fe / A
F = P A
the area of a circle is
A = pi r² = [i d ^ 2/4
let's reduce the units to the SI system
d = 100 cm (1 m / 100 cm) = 1 m
F = 3.385 104 pi / 4 (1) ²
F = 2.66 10⁴ N
b) the height for which the pressures are in equilibrium is
P₁ = P₂
0.85 P₀ + ρ g h = P₀
h =
h =
h = 1.55 m
To develop this problem it is necessary to apply the optical concepts related to the phase difference between two or more materials.
By definition we know that the phase between two light waves that are traveling on different materials (in this case also two) is given by the equation

Where
L = Thickness
n = Index of refraction of each material
Wavelength
Our values are given as





Replacing our values at the previous equation we have




Therefore the thickness of the mica is 6.64μm