<span>c. What is the magnitude of the tension in the string at the bottom of the circle if you are swinging it at 3.37 m/s?
</span>
Answer:
hello your question is incomplete attached below is the complete question
answer :
a) I1 = I2
b) J1 > J2
c) E 1 > E2
d) ( vd1 ) > ( vd2 )
Explanation:
a) The currents in the two segments are the same i.e. I1 = I2 and this is because the segments are connected in series
b) Comparing the current densities J1 and J2 in the two segments
note : current density ∝ 1 / area
The area of the second segment is > the area of first segment therefore
J1 > J2
J1 ( current density of first segment )
J2 ( current density of second segment )
c) Comparing the electric field strengths E1 and E2
note : electric field strength ∝ current density
since current density of first segment is > current density of second segment and conductivity of the materials are the same hence
E 1 > E2
d) Comparing the drift speeds Vd1 and Vd2
( vd1 ) > ( vd2 )
this because ; vd ∝ current density
It is called the reaction force of a bird flying.
KHDMDCM.
Now go from Kilometer to Centimeter: 5.
Move the decimal 5 places to the right: 67,500,000 centimeters.
Hope this helps :)
Something is reproducing.