The ideal gas equation is pV = nRT
From that you can derive several equations, depending on which variables are fixed.
1) When n and T are fixed:
pV = nRT = constant
pV = constant => p1 V1 = p2 V2 => p1 / V2 = p2 / V1 ---> Boyle's Law
2) When n and V are constant:
p / T = nR/V = constant
p / T = constant => p1 / T1 = p2 / T2 ----> Gay - Lussac's Law
3) when n and p are constant
V / T = nR/p = constant
V / T = constant => V1 / T1 = V2 / T2 ---> Charles' Law
4) When only n is constant
pV / T = nR = constant
pV / T = constant => p1 V1 / T1 = p2 V2 / T2 ----> Combined gas law.
There you have the four equations that agree with the ideal gas law.
1cm^3 = 1L would be the correct answer. One cubic centimeter equals .001 liter, so this equality above is not correct.
Please let me know if you have any questions! :)
<h3><u>Answer;</u></h3>
10.80 ° C
<h3><u>Explanation;</u></h3>
From the information given;
Initial temperature of water = 24.85°C
Final temperature of water = 35.65°C
Mass of water = 1000 g
The specific heat of water ,c = 4.184 J/g °C.
The heat capacity of the calorimeter = 695 J/ °C
Change in temperature ΔT = 35.65°C - 24.85°C
= 10.80°C
896.27
One mole of sodium sulfate is 143.04, so just multiply that times 6.31.
I may be wrong call me out if I am