Answer:
x squared plus two times x minus one = zero.
Step-by-step explanation:
(This is a Quadratic equation in the variable x).
Answer: you already gave the answer. To check it submit
factor 3x^4y^3 − 15x^2y^2 + 6xy
to Wolfram Alpha.
3xy(x^3y^2 − 5xy + 2) is the "irreducible factorization".
Answer:
go on symbolab type the equation in and it gives u anwsers and work
Step-by-step explanation:
=\frac{4}{\left(x+2\right)\left(x+4\right)}
Answer:
c a b
Step-by-step explanation:
brailiest pls
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so
