Answer:
- <u>The rate of return is 8.15%</u>
- <u>This is a good investment</u>
<u></u>
Explanation:
For the first question, you need to find the rate that makes the present value of a stream of ten constant annual payments of $15,000 equal to the $100,000 investment.
The formula that returns the present value of a constant payment is called the annuity formula and is:
![Present\text{ }value=payment\times \bigg[\dfrac{1}{r}-\dfrac{1}{r(1+r)^t}\bigg]](https://tex.z-dn.net/?f=Present%5Ctext%7B%20%7Dvalue%3Dpayment%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7Br%7D-%5Cdfrac%7B1%7D%7Br%281%2Br%29%5Et%7D%5Cbigg%5D)
In your problem you know:
- Present value: $100,000
- payment: $15,000
- r: ?
- t: 10
You cannot solve for r directly. You must guess a value and calculate the right side of the equation until to you find the rate that makes it equal to 100,000.
Try 5%:
![\$15,000\times \bigg[\dfrac{1}{0.05}-\dfrac{1}{0.05(1+0.05)^{10}}\bigg]=\$115,826](https://tex.z-dn.net/?f=%5C%2415%2C000%5Ctimes%20%5Cbigg%5B%5Cdfrac%7B1%7D%7B0.05%7D-%5Cdfrac%7B1%7D%7B0.05%281%2B0.05%29%5E%7B10%7D%7D%5Cbigg%5D%3D%5C%24115%2C826)
Then, the rate of return is greater than 5%. After several trials you will find that the rate of return is 8.15%.
Since this rate is higher than 8%, which is what the company requires, this is a good investment.
Answer:
The 10th term is 50
Step-by-step explanation:
5(10) = 50
I believe the answer is (0,0)
We have been given a graph of function g(x) which is a transformation of the function 
Now we have to find the equation of g(x)
Usually transformation involves shifting or stretching so we can use the graph to identify the transformation.
First you should check the graph of 
You will notice that it is always above x-axis (equation is x=0). Because x-axis acts as horizontal asymptote.
Now the given graph has asymptote at x=-2
which is just 2 unit down from the original asymptote x=0
so that means we need shift f(x), 2 unit down hence we get:

but that will disturb the y-intercept (0,1)
if we multiply
by 3 again then the y-intercept will remain (0,1)
Hence final equation for g(x) will be:
