Answer:
1.16
Step-by-step explanation:
Given that;
For some positive value of Z, the probability that a standardized normal variable is between 0 and Z is 0.3770.
This implies that:
P(0<Z<z) = 0.3770
P(Z < z)-P(Z < 0) = 0.3770
P(Z < z) = 0.3770 + P(Z < 0)
From the standard normal tables , P(Z < 0) =0.5
P(Z < z) = 0.3770 + 0.5
P(Z < z) = 0.877
SO to determine the value of z for which it is equal to 0.877, we look at the
table of standard normal distribution and locate the probability value of 0.8770. we advance to the left until the first column is reached, we see that the value was 1.1. similarly, we did the same in the upward direction until the top row is reached, the value was 0.06. The intersection of the row and column values gives the area to the two tail of z. (i.e 1.1 + 0.06 =1.16)
therefore, P(Z ≤ 1.16 ) = 0.877
-18 and +2
;;;;;;;;;;;;;;;;;;
Your answer is E. $25.
First let under 12 = u, over 12 = o, and adults = a.
We can now write the equations:
2u + 3a + 3o = 174
4u + 2a = 122
a + o = 46
Because we know that a + o = 46, and 3a + 3o is in the first equation, we can multiply 46 by 3 to get what 3a + 3o equals. This makes 138.
Now we can substitute 138 into the first equation to get 2u + 138 = 174
2u = 36
u = 18
Now that we know what u equals, we can substitute it in to the second equation to get:
4(18) + 2a = 122
72 + 2a = 122
2a = 50
a = $25
I hope this helps! Let me know if you have any questions :)
Answer:
Here is your answer C
Step-by-step explanation: