Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
Answer:
- Heat energy is transferred from homes by conduction through the walls, floor, roof and windows. It is also transferred from homes by convection. For example, cold air can enter the house through gaps in doors and windows, and convection currents can transfer heat energy in the loft to the roof tiles.
- Convection is the heat transfer due to the movement of a fluid, such as a gas or liquid, and carries heat energy away from the source of heat. When a substance is heated, it causes its particles to vibrate more. The more vibration, the more space they will take up and the less dense they will become.
I really hope it helps! ❤
<u>Answer:</u> The mole ratio of H : O in ammonium nitrate is 4 : 3.
<u>Explanation:</u>
We are given a compound named ammonium nitrate having formula 
There are 3 elements in this compound which are nitrogen, hydrogen and oxygen.
To calculate the mole ratio, we write the ratio of their subscripts. For this compound, it is:

The mole ratio of H and O for this compound is 4 : 3.
Answer:
0.978 M
Explanation:
Given data
- Mass of luminol (solute): 13.0 g
- Volume of the solution = volume of water: 75.0 mL = 0.0750 L
We can find the molarity of the stock solution of luminol using the following expression.
M = mass of solute / molar mass of solute × liters of solution
M = 13.0 g / 177.16 g/mol × 0.0750 L
M = 0.978 M