Answer:
Initial rate of the reaction when concentration of hydrogen gas is doubled will be
.
Explanation:

Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
Initial rate of the reaction = R = 
![R = k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=R%20%3D%20k%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)
![4.0\times 10^5 M/s=k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=4.0%5Ctimes%2010%5E5%20M%2Fs%3Dk%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)
The initial rate of the reaction when concentration of hydrogen gas is doubled : R'
![[H_2]'=2[H_2]](https://tex.z-dn.net/?f=%5BH_2%5D%27%3D2%5BH_2%5D)
![R'=k\times [N_2][H_2]'^3=k\times [N_2][2H_2]^3](https://tex.z-dn.net/?f=R%27%3Dk%5Ctimes%20%5BN_2%5D%5BH_2%5D%27%5E3%3Dk%5Ctimes%20%5BN_2%5D%5B2H_2%5D%5E3)
![R'=8\times k\times [N_2][H_2]^3](https://tex.z-dn.net/?f=R%27%3D8%5Ctimes%20k%5Ctimes%20%5BN_2%5D%5BH_2%5D%5E3)

Initial rate of the reaction when concentration of hydrogen gas is doubled will be
.
The answer is 2, liquid to vapor because vaporization is the process of liquids to vapors.
Answer:
convert 250.0 mL in Liters :250. 0 / 1000 = 0,25 LDensity = 1.240 g/LMass
Explanation:
<h3><u>Answer;</u></h3>
Empirical formula = C₂H₃O
Molecular formula = C₁₄H₂₁O₇
<h3><u>Explanation</u>;</h3>
Empirical formula
Moles of;
Carbon = 55.8 /12 = 4.65 moles
Hydrogen = 7.04/ 1 = 7.04 moles
Oxygen = 37.16/ 16 = 2.3225 moles
We then get the mole ratio;
4.65/2.3225 = 2.0
7.04/2.3225 = 3.0
2.3225/2.3225 = 1.0
Therefore;
The empirical formula = <u>C₂H₃O</u>
Molecular formula;
(C2H3O)n = 301.35 g
(12 ×2 + 3× 1 + 16×1)n = 301.35
43n = 301.35
n = 7
Therefore;
Molecular formula = (C2H3O)7
<u> = C₁₄H₂₁O₇</u>