It’s because new discoveries are made all the time sometimes what was considered right may be found out to be wrong
Answer:

Explanation:
We are asked to find how much heat a sample of copper absorbs when the temperature is increased.
Since we know the mass, temperature increase, and specific heat capacity, we can use the following formula to calculate heat.

The mass of the copper sample is 100 grams, the temperature is changed or increased by 30.0 degrees Celsius, and the specific heat of copper is 0.39 Joules per gram degrees Celsius.
- m= 100 g
- c= 0.39 J/g °C
- ΔT= 30.0 °C
Substitute the values into the formula.

Multiply the first two values. Note that the units of grams cancel.

Multiply again, this time the units of degrees Celsius cancel.

The copper sample absorbs <u>1170 Joules</u> of heat and <u>Choice B </u>is correct.
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
An atom or molecule with a net electric charge due to the loss or gain of one or more electrons. :)
Answer:
Hi
Explanation:
That's why rubbing your hands together makes them warmer. ... Friction causes the molecules on rubbing surfaces to move faster, so they have more energy. This gives them a higher temperature, and they feel warmer. Heat from friction can be useful.