Answer:

General Formulas and Concepts:
<u>Chemistry - Gas Laws</u>
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
- Charles' Law:

Explanation:
<u>Step 1: Define</u>
Initial Volume: 5.0 L H₂ gas
Initial Temp: 273 K
Final Temp: 985 K
Final Volume: ?
<u>Step 2: Solve for new volume</u>
- Substitute:

- Cross-multiply:

- Multiply:

- Isolate <em>x</em>:

- Rewrite:

<u>Step 3: Check</u>
<em>We are given 2 sig figs as the smallest. Follow sig fig rules and round.</em>
<em />
<em />
Answer:
HClO₃ /chloric acid /suffix -ic/ ClO₃⁻ (chlorate)
HClO₂/ chlorous acid/ suffix -ous/ ClO₂⁻ (chlorite)
HNO₃ /nitric acid /suffix -ic/ NO₃⁻ (nitrate)
HNO₂/ nitrous acid/ suffix -ous/ NO₂⁻ (nitrite)
Explanation:
Chlorine has 4 positive oxidation numbers to form oxyacids: +1, +3, +5 and +7.
- When it uses the oxidation number +5, it forms HClO₃, which is named chloric acid, with the suffix -ic. When it loses an H⁺, it forms the oxyanion ClO₃⁻ (chlorate).
- When it uses the oxidation number +3, it forms HClO₂, which is named chlorous acid, with the suffix -ous. When it loses an H⁺, it forms the oxyanion ClO₂⁻ (chlorite).
Nitrogen has 2 positive oxidation numbers to form oxyacids: +3 and +5.
- When it uses the oxidation number +5, it forms HNO₃, which is named nitric acid, with the suffix -ic. When it loses an H⁺, it forms the oxyanion NO₃⁻ (nitrate).
- When it uses the oxidation number +3, it forms HNO₂, which is named nitrous acid, with the suffix -ous. When it loses an H⁺, it forms the oxyanion NO₂⁻ (nitrite).
Answer:
The protonated form is predominant when aspirin is absorbed more readily. The ratio of conjugate base to acid is 1 to 100.
Explanation:
Aspirin is more readily absorbed when it is protonated, that is when pH is lower than pKa (<em>more H⁺ available in the medium</em>). We can confirm this using Henderson-Hasselbalch equation for pH = 1.5:

When aspirin is absorbed more readily the ratio of conjugate base to acid is 1 to 100, being the acid the <em>predominant</em> form.
Answer:
43.868 J
Explanation:
Kinetic energy of a body is the amount of energy possessed by a moving body. The SI unit of kinetic energy is the joule (kg⋅m²⋅s⁻²).
According to classical mechanics, kinetic energy = 1/2 m·v²
Where, m= mass in kg and v= velocity in m/s
Given: m = 19.2 lb and v = 7.10 miles/h
Since, 1 lb= 0.453592 kg
∴ m = 19.2 lb = 19.2 × 0.453592 kg = 8.709 kg
Also, 1 mi = 1609.34 m and 1 h = 3600 sec
∴ v = 7.10 mi/h = 7.10 × 1609.34 m ÷ 3600 sec = 3.174 m/sec
Therefore, <u>kinetic energy of the goose</u> = 1/2 m·v² = 1/2 × (8.709 kg)× (3.174 m/sec)² = 43.868 J