Explanation:
Due to the positive value of the change in temperature, this is an endothermic reaction.
Since the forward reaction is endothermic, increasing the temperature increases the equilibrium constant (k).
In an equilibrium system, the position of the equilibrium will move in a way to annul the change made to the system. An increase in temperature for an endothermic reaction would favour the reaction, leading to increase in amount of products and decrease in amount of reactants.
<h2>Answer:</h2>
A pure metal has specific properties. Sometimes we need that metal but with modified properties. So for the modification of properties we make alloys.
<h3>Explanation;</h3>
- An alloy is a mixture of two elements, one of which is a metal.
- Alloys often have properties that are different to the metals they contain.
- This makes them more useful than the pure metals alone.
- For example, alloys are often harder than the metal they contain.
Answer:
The pressure occupied is 1, 8 atm.
Explanation:
We use the Boyle´s Mariotte ´s law: for a given mass of gas at constant temperature, the pressure and volume vary inversely proportionally: P1xV1= P2xV2. The unit of pressure is converted to mmHg in atm.
760 mmHg----1 atm
912 mmHg---x= (912 mmHg x 1 atm)/760 mmHg=1,2 atm
P1xV1= P2xV2
P2=P1xV1/V2= 1,2 atm x 12 L/ 8L= <em>1, 8 atm</em>
There are three variables independent, dependent ,and controlled
A catalyst reduces H°rnx in most reactions. The answer is false
<h3>Do catalysts reduce delta H?</h3>
By reducing the activation energy required for the reaction to occur, a catalyst just modifies the route used to go from reactants to products. However, because it doesn't alter the state of the products or reactants, delta H is unaffected.
A catalyst reduces a reaction's activation energy, enabling a chemical reaction to occur. The number of reactant particles with energy above the activation energy increases as the temperature of a reaction rises.
learn more about catalyst refer
brainly.com/question/12507566
#SPJ4