Answer:
We need 8.11 grams of glucose for this solution
Explanation:
Step 1: Data given
Molarity of the glucose solution = 0.300 M
Total volume = 0.150 L
The molecular weight of glucose = 180.16 g/mol
Step 2: Calculate moles of glucose in the solution
Moles glucose = molarity solution * volume
Moles glucose = 0.300 M * 0.150 L
Moles glucose = 0.045 moles glucose
Step 3: Calculate mass of glucose
MAss glucose = moles glucose* molecular weight of glucose
MAss glucose = 0.045 moles * 180.16 g/mol
MAss glucose = 8.11 grams
We need 8.11 grams of glucose for this solution
Answer:
In one mole of glucose, there are
6.022×1023
individual glucose molecules
Explanation:
As you can see in the picture we have +ΔH so that means for this reaction we need to GET heat. so the answer is A. endothermic :))
i hope this is helpful
have a nice day
In thermodynamics<span>, </span>work<span> performed by a system is the energy transferred by the system to its surroundings. It can be calculated by the expression:
</span>
W = PdV
Integrating,
We will have,
W = P(V2 - V1)
133.7 (1 litre-atm / 101.325 Joule) ( <span>760 Torr / atm ) </span>= 783 (V2 - .0737 )
V2 = 1.35 L
Hope this answers the question. Have a nice day.
817.567 mm hg the answer for number 2