Sucrose; C12H22O11
C9H8O4; acetyl salicylic acid
H2O2; hydrogen peroxide,
NaOH; sodium hydroxideExplanation:
Answer:
True statment
2) Styrofoam would make a good calorimeter
3) Insulating material would make a good calorimeter
Explanation:
The calorimeter is one which is insulated that is which will not absorb or let the heat to escape from it. the calorimeter is used to measure the heat change during a process so if it will allow to exchange heat with surrounding it will deviate the readings or observence.
Copper is a good conductor of heat so we cannot use it make a calorimeter.
Hence
1) Copper would make a good calorimeter : False
2) Styrofoam would make a good calorimeter: True
Styrofoam is a bad conductor or insulator so it can be and it is used for calorimeter.
3) Insulating material would make a good calorimeter
: True
4) A good calorimeter should easily absorb heat : false
Answer:
Inherited traits are passed from parent to offspring by information coded in
the DNA or Deoxyribonucleic Acid
In the reaction as follows: NH2- + CH3OH → NH3 + CH3O−, NH2- is the Brønsted-Lowry base.
BRØNSTED-LOWRY BASE:
- According to Bronsted-Lowry definition of a base and acid, a base is substance that accepts an hydrogen ion or proton (H+) while an acid is a substance that donates a proton.
- According to this reaction given as follows: NH2 + CH3OH → NH3+ CH3O-
- NH2- is a reactant that accepts a hydrogen ion (H+) to become NH3+
- NH3+CH3OH is a reactant that donates hydrogen ion (H+)
- Since NH2- accepts a proton, this means that in the reaction as follows: NH2 + CH3OH → NH3 + CH3O−, NH2- is the Brønsted-Lowry base.
Learn more at: brainly.com/question/21736327?referrer=searchResults