Using the Equation:
v² = vi² + 2 · a · s → Eq.1
where,
v = final velocity
vi = initial velocity
a = acceleration
s = distance
<span><span>We know that vi = 0 because the ball was at rest initially.
</span><span>
Therefore,
Solving Eq.1 for acceleration,
</span></span> v² = vi² + 2 · a · s
v² = 0 + 2 · a · s
v² = 2 · a · s
Rearranging for a,
a = v ²/2·<span>s
Substituting the values,
a = 46</span>²/2×1<span>
a = 1058 m/s</span>²
<span>Now applying Newton's 2nd law of motion,
</span>
<span>F = ma
= 0.145</span>×<span>1058
F = 153.4 N</span>
Explanation:
potential energy =360800J
mass(m)=?
height (h)=25m
g=9.8m/s²
we have
potential energy =360800J
mgh=360800J
m×9.8×25=360800
m=360800/(9.8×25)=1472.653061kg
Explanation:
B. leads to muscle strain.
Answer:
Explanation:
Use the one-dimensional equation
where vf is the final velocity of the dog, v0 is the initial velocity of the dog, a is the acceleration of the dog, and t is the time it takesto reach that final velocity. For us:
0 = 2 + -.43t and
-2 = -.43t so
t = 4.7 seconds
Use this formula to find your answer...
Determine the frequency of a clock waveform whose period is 2us or (micro) and 0.75ms
frequency (f)=1/( Time period).
Frequency of 2 us clock =1/2*10^-6 =10^6/2 =500000Hz =500 kHz.
Frequency of 0..75ms clock =1/0.75*10^-3 =10^3/0.75 =1333.33Hz =1.33kHz.