Answer:
<h2>50 N</h2>
Explanation:
The force required can be found by using the formula

w is the workdone
d is the distance
From the question we have

We have the final answer as
<h3>50 N</h3>
Hope this helps you
Answer:
v ≈ 7900 m/s
Explanation:
centripetal force will equal gravity force
mv²/R = mg
v²/R = g
v² = Rg
v = √(Rg)
v = √(6.4e6(9.8))
v = 7.91959...e+3
v ≈ 7900 m/s
of course, at those velocities and that deep into the atmosphere, the satellite would quickly burn up, slow down, and cause tremendous damage to buildings etc. with the sonic boom shock wave. It would also have to avoid a lot of mountains as 4000 m is not that high.
Acceleration = vf-vi /t
10-22/3=2.6m/s^2
The frequency of middle C on a string is
f = 261.6 Hz.
The given linear density is
ρ = 0.02 g/cm = (0.02 x 10⁻³ kg)/(10⁻² m)
= 0.002 kg/m
The length of the string is L = 1 m.
Let T = the tension in the string (N).
The velocity of the standing wave is

In the fundamental mode, the wavelength, λ, is equal to the length, L.
That is
Because v = fλ, therefore

From given information, obtain
T = (0.002 kg/m)*(261.6 1/s)²*(1 m)²
= 136.87 N
Answer: 136.9 N (nearest tenth)
Answer:
The frequency of the green light is 
Explanation:
The visible region is part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of
in the vacuum.
Green light is part of the visible region. Therefore, the frequency can be determined by the following equation:
(1)
Where c is the speed of light,
is the wavelength and
is the frequency.
Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave (that is a magnetic field perpendicular to an electric field).
Then,
can be isolated from equation 1
(2)
Notice that it is necessary to express the wavelength in units of meters.
⇒ 
Hence, the frequency of the green light is 